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Abstract: The stock markets have become a popular topic within machine learning (ML) communities,
with one particular application being stock price prediction. However, accurately predicting the stock
market is a challenging task due to the various factors within financial markets. With the introduction
of ML, prediction techniques have become more efficient but computationally demanding for classical
computers. Given the rise of quantum computing (QC), which holds great promise for being
exponentially faster than current classical computers, it is natural to explore ML within the QC
domain. In this study, we leverage a hybrid quantum-classical ML approach to predict a company’s
stock price. We integrate classical long short-term memory (LSTM) with QC, resulting in a new
variant called QLSTM. We initially validate the proposed QLSTM model by leveraging an IBM
quantum simulator running on a classical computer, after which we conduct predictions using
an IBM real quantum computer. Thereafter, we evaluate the performance of our model using the
root mean square error (RMSE) and prediction accuracy. Additionally, we perform a comparative
analysis, evaluating the prediction performance of the QLSTM model against several other classical
models. Further, we explore the impacts of hyperparameters on the QLSTM model to determine
the best configuration. Our experimental results demonstrate that while the classical LSTM model
achieved an RMSE of 0.0693 and a prediction accuracy of 0.8815, the QLSTM model exhibited
superior performance, achieving values of 0.0602 and 0.9736, respectively. Furthermore, the QLSTM
outperformed other classical models in both metrics.

Keywords: AI in finance; long short-term memory; quantum machine learning; stock price prediction;
time-series analysis

1. Introduction

Predicting involves forecasting future events by analyzing historical data. Forecast-
ing stock prices is a challenging task, as they are influenced by factors such as political
conditions, the global economy, and company performance [1]. Research into stock price
prediction predominantly relies on two types of data: time-series structured historical
market data and unstructured textual sources, like financial news [2]. A time-series, in this
context, is a chronological sequence of observations for a specific variable. In our scenario,
the stock price is a time-series dataset as it involves daily historical records, including
opening, closing, highest, and lowest prices, alongside trading volumes. Traditionally,
the primary method for forecasting a company’s stock price has been through technical
analysis. This method utilizes historical data such as closing and opening prices, trading
volume, and adjacent close values to predict future stock price data [3].

Recently, machine learning (ML), particularly deep learning (DL), has achieved tremen-
dous success in various fields, particularly computer vision [4,5] and natural language pro-
cessing [6]. Notably, White et al. [7] was the first to successfully predict stock market time-
series using the backpropagation neural network (BP-NN). Subsequently, Kolarik et al. [8]
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compared the prediction results of artificial neural networks (ANN) with those of the
auto-regressive integrated moving average model (ARIMA), demonstrating the superior
effectiveness of ANN. In stock price prediction, two commonly used DL architectures
are recurrent neural networks (RNNs) and long short-term memory (LSTM) networks.
LSTM, characterized by a sequence of memory cells operating as computational units, is
particularly adept at analyzing and forecasting time-series data with remarkable accuracy
and efficiency. Chen et al. [9] achieved stock returns prediction with the LSTM model, while
Fischer et al. [10] utilized LSTM to predict stock prices and devise short-term investment
strategies. However, these architectures are limited by several factors, such as vanishing
and exploding gradients, as well as high computational complexity and intensity.

In recent years, quantum computing (QC) technology has attracted considerable
attention, encompassing both hardware and quantum algorithm development [11,12].
Theoretically and evidently, quantum computers have the potential to solve problems that
are currently beyond the capabilities of classical computers, such as factoring large integers
and implementing quantum search algorithms [13]. However, quantum computers are still
in their infancy, hindered by the low availability of quantum bits (qubits) and high physical
device error rates. Therefore, the utilization of hybrid quantum-classical algorithms, such
as the variational quantum eigensolver, quantum approximate optimization algorithm, and
quantum machine learning (QML), has gained traction. These hybrid algorithms employ
variational quantum circuits (VQCs), a type of quantum circuit whose gate parameters are
adjustable and optimized classically, effectively harnessing the computational resources
of both quantum and classical computers [14]. However, the major challenge for VQCs is
related to “barren plateaus,” which are large regions where the cost function is flat and
therefore untrainable by any gradient-based learning algorithm [15].

To harness the advantages of classical LSTM in analyzing stock price time-series data
and leverage the expressive capabilities of QC, a hybrid quantum-classical computing
model is developed for predicting stock prices. This hybrid framework combines a classical
LSTM model for thorough data analysis with a VQC for quantum-enhanced execution,
aiming to predict stock prices with excellent accuracy and efficiency. The main contributions
of this study are summarized below:

• We introduced a specifically designed hybrid quantum-classical computing framework
for predicting the stock price data of a single company.

• We detailed and utilized the quantum circuit for encoding classical data into quantum
states, potentially leading to more efficient representations that better capture the
underlying patterns in stock price data.

• We also offered a thorough discussion on limitations and proposed future works to
extend its applicability beyond stock price prediction, encompassing other domains,
particularly focusing on time-series data analysis.

• Our experiments illustrate the superior performance of the proposed QLSTM model
over classical LSTM and other specialized time series models. It achieves a signifi-
cantly decreased root mean square error (RMSE) and an improved accuracy, evident
throughout both the training and prediction phases.

• We rigorously evaluated the QLSTM model by executing it on an IBM quantum
simulator and further validated its capabilities by conducting predictions on actual
IBM quantum hardware. Additionally, we conducted tests under various quantum
environments, including noiseless and noisy quantum simulators, showcasing its
remarkable performance superiority.

The remaining sections are organized as follows. Section 2 briefly presents the back-
ground of classical ML and QC. Section 3 describes the related works of both classical
and quantum models for time-series data prediction. Then, the utilized QLSTM model
architecture is introduced in Section 4. Section 5 shows the experimental results of the
proposed method with the stock price data. Section 6 provides a discussion and limitations
of our studies. The conclusion is provided in the last Section 7.



Entropy 2024, 26, 954 3 of 19

2. Background

In this section, we introduce the fundamental concepts of classical ML and QC, setting
the stage for a discussion on its quantum counterparts.

2.1. Classical Machine Learning

RNNs are a class of models in classical ML capable of handling sequential data by
memorizing the history of previous data inputs to make more accurate predictions [16].
Unlike traditional feedforward networks, an RNN produces an output for the current time
step and maintains a hidden state that cycles back into the network, constructively retaining
information from previous time steps. However, as the RNN depth or the sequence length
increases, it often faces the challenge of vanishing or exploding gradients [17]. LSTM
networks are an improved version of RNNs, solving the problems encountered by RNNs
through small modifications to the information through multiplications and additions. With
LSTM, data propagation flows through cell units, facilitating retention or the discarding of
information selection. It consists of a series of interconnected cells arranged in an unrolled
manner, enabling the processing of sequential data effectively [18]. Each cell, at time step t,
receives three distinct inputs: xt, ht−1, and ct−1, and consequently generates two outputs:
ht and ct. As shown in Figure 1, the architecture of an LSTM cell, which relies on three
gates to control the cell state, is mathematically represented as follows:

ft = σ(W f [ht−1, xt] + b f ),

it = σ(Wi[ht−1, xt] + bi),

C̃t = tanh(WC[ht−1, xt] + bC),

ct = ft ∗ ct−1 + it ∗ C̃t,

ot = σ(Wo[ht−1, xt] + bo),

ht = ot ∗ tanh(ct),

(1)

where σ denotes the sigmoid function, W f , Wi, Wo, and WC are classical NNs for forget
gate, input gate, output gate, and cell state, respectively, b f ,i,o,C is the corresponding biases
for the W f ,i,o,C, while [ht−1, xt] refers to the concatenation of hidden state ht and xt to each
cell, respectively. The input gate it determines the new information to add to the cell state
ct, while the cell state ct retains relevant information over time. The output gate ot controls
the output ht based on the cell state ct. Additionally, C̃t is the candidate cell state, which is
created to enhance the cell state update.

Figure 1. Schematic for the internal structure of a classical LSTM cell.

2.2. Quantum Computing

In classical computing, a binary unit of information is stored in a bit, which can take
one of two values: 0 or 1. Bit operations are performed using elementary logic gates,
such as AND, OR, and NOT. Conversely, QC benefits from quantum bits (qubits) which
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can hold combinations of 0 and 1 at the same time via superposition and entanglement.
Simultaneously, the two qubit states |0⟩ and |1⟩ can be defined as follows:

|0⟩ =
[

1
0

]
|1⟩ =

[
0
1

]
(2)

Any qubit |ψ⟩ can be described as a linear combination of two basis states, α|0⟩+ β|1⟩,
where α and β are complex numbers, and |α|2 + |β|2 = 1. As a qubit can exist as a
superposition of two classical states, two qubits allow the superposition of four states,
and n qubits allow the superposition of 2n, represented by |0⟩, |1⟩, |2⟩, . . . |2n − 1⟩. In a
multi-qubit system, where all qubits are in superposition, the state of one qubit can become
correlated with the state of another. As a result, changing or measuring one qubit reveals
the value of the other. This phenomenon is known as entanglement [19]. Additionally,
the total probability across all qubits in superposition equals 1. At the same time, two
strategies to achieve quantum advantage are mentioned in a study [13]. The first involves
showing that current quantum devices can execute computations that are beyond the
reach of classical simulations. The second strategy focuses on developing quantum circuits
tailored to specific problems, leveraging these devices for a computational advantage In this
paper, we prioritize the first approach, emphasizing the efficiency of quantum computers
in handling large-scale high-dimensional data in polynomial time [20,21], making them
particularly promising for machine learning applications [22].

2.3. Quantum Machine Learning

ML is among the most successful and extensively researched technologies in computer
science [23]. Consequently, it has been integrated with QC to form QML, which aims to
solve complex classical ML problems by harnessing the unique computational capabilities
of QC [24]. There are four strategies for integrating ML and QC, based on whether one
considers the data to have been created by a classical (C) or quantum (Q) system, and
whether the computer processing the data is classical (C) or quantum (Q), as shown in
Figure 2.

Figure 2. Four different methods for integrating ML with QC.

The first scenario, CC, involves utilizing classical data with traditional ML algorithms.
In contrast, the second scenario, QC, explores the potential of leveraging ML to enhance
quantum computers by analyzing quantum measurement data. The CQ scenario uses
quantum algorithms to examine classical datasets. This approach requires translating
classical data into quantum data, a process known as quantum encoding. The last scenario,
QQ, involves the processing of quantum data by a quantum device using a quantum
algorithm. In our study, we concentrate on the CQ scenario. This approach involves
running QML algorithms on quantum simulators or computers to achieve algorithmic
superiority [24]. Moreover, there are many approaches exist which can be employed to
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maximize the potential of hybrid CQ methods. These typically begin with encoding classical
data into quantum states which refers to data encoding. Followed by data encoding,
a variational quantum circuit with fixed parameters is constructed, which enables the
approximation, optimization, and classification of various computational tasks [25].

2.4. Quantum Encoding

Several QML algorithms require converting classical data into quantum states within
quantum computers, a process known as data encoding [26]. In other words, the dataset
is initially translated from the subject data domain D to the Hilbert space H through
a designated feature mapping process f : D → H. One of the encoding techniques,
specifically angle encoding or qubit encoding, is widely renowned for its ability to leverage
a minimal number of qubits that correspond to the size of the input vector [27]. The angle
encoding scheme demonstrates remarkable efficiency as it necessitates the rotation of only
a single qubit as depicted in Figure 3.

Figure 3. Angle encoding quantum circuit.

In this technique, each data value x undergoes an initial normalization process, map-
ping it to the range [0, 2π]. Subsequently, it is encoded using single-qubit rotation gates RX ,
RY, or RZ. These rotation gates dynamically determine the rotation angle θ based on the
corresponding data value x. As such, this approach requires n qubits to encode n input
variables defined as follows:

|ψx⟩ =
n⊗

i=1

R(xi)|ψ0⟩, (3)

where R is one of the rotation gates and |ψ0⟩ is an initial state. The tensor product
⊗

signifies that the quantum state is a multi-qubit state formed by the individual states
created by each rotation gate.

3. Related Works

In this section, we will review several relevant research works that explore financial
applications, especially stock price prediction, using both classical ML and QML.

3.1. Classical Machine Learning

Chen et al. [28] proposed a two-stage portfolio-selection method using ML for stock
price prediction. First, they adopted classical ML models to forecast stock prices across
various datasets. Thereafter, they applied mean-variance portfolio optimization to iden-
tify the most promising stocks for investment based on higher potential returns within
the predictions. The experimental results yielded RMSE values of 0.0744 and 0.0807 for
LSTM and ANN, respectively, highlighting the superior performance of LSTM in error
minimization. However, the prediction results are not as robust as desired and could,
consequently, influence portfolio selection. Mehtab et al. [29] designed and evaluated
eight ML-based regression models for stock price prediction, including multivariate linear
regression, multivariate adaptive regression spline, regression tree, bootstrap aggregation,
extreme gradient boosting, random forest, ANN, and support vector machine (SVM). No-
tably, the LSTM-based DL models outperformed other ML regression models significantly.
However, their designed LSTM model performed poorly with multivariate data.

Khan et al. [30] applied algorithms to analyze the impact of social media and financial
news data on stock price prediction accuracy over 10 days. They conducted experiments
to identify unpredictable stock markets, comparing various algorithms to find a consis-
tent classifier. Thereafter, DL was applied to obtain the maximum accuracy, with some
classifiers combined through ensembling. The experimental results demonstrate that the
most accurate predictions, reaching 80.53% and 75.16%, respectively, are attained through
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the analysis of social media and financial news. Hamayel et al. [31] proposed three types
of RNN algorithms for predicting the prices of three types of cryptocurrencies, namely
gated recurrent unit (GRU), LSTM, and bi-LSTM. Based on the outcomes, the GRU model
for the targeted cryptocurrencies was considered efficient and reliable. The experiment
yielded RMSE values of 3.069, 4.307, and 0.825 for LSTM, bi-LSTM, and GRU, respectively.
However, GRUs may not be as effective at storing and accessing long-term dependencies
as LSTMs due to their simpler structure and fewer gating mechanisms.

3.2. Quantum Machine Learning

Here, we present a curated selection of works focusing on the application of QML in
analyzing and predicting time-series data, particularly on stock price data. Emmanoulopou-
los et al. [32] investigated the performance of an approach utilizing parameterized quantum
circuits as quantum neural networks (QNNs) for forecasting time-series data. The perfor-
mance of the QNNs was compared to that of a classical bi-LSTM model to evaluate their
effectiveness. However, we did not consider using quantum noise and an actual quantum
machine to validate the model’s effectiveness. While several studies have proposed reser-
voir quantum computing as an alternative technique for time-series prediction [33–35],
this work focuses exclusively on the QNN approach. We aim to explore the advantages of
QNNs without delving into reservoir quantum computing. Srivastava et al. [36] investi-
gated quantum algorithms for stock-price prediction through experimental simulations
on both classical and actual quantum machines. They employed quantum annealing for
feature selection and principal component analysis for the dimensionality reduction of the
data. The prediction task was transformed into a classification problem, and a quantum
SVM was trained to predict the stock prices. However, the experimental accuracy was
only 60%; this is expected since quantum SVMs are not particularly suitable for prediction
tasks. Paquet et al. [37] introduced a hybrid QNN called QuantumLeap for financial predic-
tion. The network comprised an encoder that transforms partitioned financial time series
into a sequence of density matrices, a deep quantum network that predicts the density
matrix at a later time, and a classical network that measures the maximum price reached
by the security at that time based on the output density matrix. The experimental results
demonstrate the prediction accuracy and efficiency of the model. However, the proposed
design is computationally intensive, potentially posing challenges in terms of scalability
and practical implementation.

4. Stock Price Prediction Using QLSTM

Here, we detail the development of the QLSTM architecture for predicting stock price
by seamlessly integrating a VQC with a modified classical LSTM model.

4.1. Overall Architecture

In this study, we developed a QLSTM model following the procedures introduced
in [38], which is potentially applicable to noisy intermediate-scale quantum (NISQ) devices.
The process comprised the following stages: (i) initialization of input data, (ii) encoding
input data into a quantum state, (iii) employing quantum gates to manipulate the quantum
state, (iv) measuring the quantum gates, and (v) generating output predicated on the
measured results [39]. The overall framework is illustrated in Figure 4, wherein stock price
data are collected and inputted into the QLSTM for training. Thereafter, the collected data
undergo common preprocessing operations, such as normalization and transformation.
As it is a hybrid quantum-classical model, classical NNs and VQCs are initialized by
specifying the number of features, layers, and qubits, after which the model is prepared
for the quantum encoding of the stock-price dataset. Subsequently, the VQCs perform the
required computations by rotating and entangling the qubits. The computation results
of the VQCs are measured and postprocessed to obtain the predicted price. This process
iterates multiple times to minimize prediction errors, and the loss between the predicted
and actual prices is calculated. By combining classical and quantum computing elements,
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this hybrid approach aims to leverage the power of quantum-enhanced learning for more
accurate and efficient stock price prediction.

Figure 4. The overall architecture of the proposed QLSTM for stock closing price prediction.

4.2. QLSTM Structure

The main difference between the quantum and LSTM architecture is the type of
network architecture: QLSTM utilizes VQCs for computation, whereas LSTM relies on
linear recurrent neural networks. Although the QLSTM model is theoretically more efficient
than the LSTM model, it remains in the early stages of development. In designing the
QLSTM model, we replicate the behavior of the LSTM cell using quantum gates. As
illustrated in Figure 5, each VQC box resembles an LSTM cell gate. Specifically, VQC1 to
VQC4 correspond to the forget, input, update, and output gates, respectively. VQC5 is used
to convert the cell state ct to the hidden state ht, whereas VQC6 is utilized to further refine
the cell state ct into the output yt. Finally, the output yt is derived from the measurements
taken at the end of each VQC. These measurements yield Pauli Z expectation values for each
qubit involved. Optionally, these values can undergo nonlinear activation functions during
classical post-processing, thereby reshaping the final output. The structure is depicted in
Figure 5, with the corresponding mathematical formulations presented as follows:

vt = [ht−1, xt],

ft = σ(VQC1(vt)),

it = σ(VQC2(vt)),

C̃t = tanh(VQC3(vt)),

ct = ft ∗ ct−1 + it ∗ C̃t,

ot = σ(VQC4(vt)),

ht = VQC5(ot ∗ tanh(ct)),

yt = VQC6(ht),

(4)

where vt is defined as the concatenation if the previous hidden state ht−1 and the current
input xt and yt denotes the newly introduced output incorporated into QLSTM model.
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All VQCs have been formulated and categorized into three blocks within the QLSTM
architecture. These blocks function analogously to gates within the classical LSTM model.
Detailed information is provided below:

• Forget Gate: The VQC1 box processes the concatenated hidden state ht alongside
input data xt to produce a vector ft using the sigmoid function. This vector contains
values between 0 and 1. The role of ft is to dictate whether to preserve or eliminate
corresponding elements in the cell state ct−1 from the previous time step. This is
executed through element-wise operations applied to ct−1. Assigning a value of 1
indicates full retention of the corresponding element within the cell state, while a
value of 0 signifies forgetting. However, in QLSTM, the operations on the cell state
is not limited to 0 or 1 but encompass a linear combination between them, making
QLSTM suitable for efficiently learning temporal dependencies.

• Input and Update Gates: The goal of these gates is to determine the new information
to be added to the cell state. First, VQC2 processes the input vt, passing the output
through the sigmoid function to determine which values will be incorporated into
the cell state. Concurrently, VQC3 processes the concatenated input and undergoes a
transformation via a hyperbolic tangent (tanh) function, generating a new cell state
candidate C̃t. Subsequently, the output from VQC2 is element-wise multiplied by C̃t,
and the resultant vector is used to update the cell state.

• Output Gate: First, VQC4 processes the input vt by passing it through the sigmoid
function to determine the relevance of values in the cell state ct. Following this, the cell
state is transformed via the hyperbolic tangent function (tanh) and then multiplied by
the output of VQC4. Optionally, the resulting value can undergo further processing
through VQC5 to generate the hidden state ht, or through VQC6 to yield the output
yt. In general, the dimensions of the cell state ct, the hidden state ht, and the output yt
are not identical. To ensure correct dimensions, we utilize VQC5 to transform ct into
ht, and VQC6 to transform ct into yt, respectively.

Figure 5. A QLSTM cell consists of VQCs as replacements to LSTM gates.

4.3. Variational Quantum Circuits

A VQC is a quantum computation model with adjustable and tunable parameters,
which undergo further iterative optimizations. Typically, VQCs are structured with three
fundamental layers, as depicted in Figure 6: data encoding, variational, and measurement
layers. The computational process is accomplished by encoding classical data into quantum
states using a sequence of quantum gates. The U(x) block is responsible for quantum
state preparation, encoding the classical data x into the quantum state of the circuit, and
is not subject to optimization, whereas the U(θ) block represents the variational layer
with learnable parameters θ that will be optimized through gradient methods. Finally,
the outcome of the computation is measured at the conclusion of the circuit. In the NISQ
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era, this type of circuit is robust against quantum noise since the variational layer can be
extended to multiple layers. It has been successfully applied to various QML applications
and has evidently demonstrated more expressive power than its classical counterparts [40].
As a result, utilizing VQCs as the building blocks of QLSTM enhances learning.

Figure 6. The general architecture for a single variational quantum circuit (VQC) is described as
follows: U(x) represents the quantum operations for encoding classical data (x), and U(θ) represents
the repetition of variational layers, from 1 to i, each with tunable parameters θ. The final layer is a
measurement layer employed to obtain the VQC probability distribution.

4.3.1. Data Encoding Layer

This layer encodes classical data into quantum states by transitioning the qubits states
from the initialized state |0⟩ to the desired target states using the operation U(X). Typically,
each qubit encodes one classical inputs features. A general N-qubit quantum state can be
represented as follows:

|ψ⟩ = ∑
(q1,q2,··· ,qN)∈{0,1}

cq1,q2,··· ,qN |q1⟩ ⊗ |q2⟩ ⊗ · · · ⊗ |qN⟩, (5)

where cq1,q2,··· ,qN is the complex amplitude for each computational basis state, with qi ∈ 0, 1,
and the addition of the square of the amplitude represents the probability distribution after
measurement |q1⟩ ⊗ |q2⟩ ⊗ · · · ⊗ |qN⟩, ensuring that the total probability equals 1:

∑
(q1,··· ,qN)∈{0,1}

∥∥cq1,··· ,qN

∥∥2
= 1. (6)

The first step of encoding in U(X) commonly utilizes the Hadamard gate H for encod-
ing scheme to transform the initial state |0⟩ ⊗ · · · ⊗ |0⟩ into an unbiased state as follows:

(H|0⟩)⊗N =
1√
2N

(|0⟩+ |1⟩)⊗N

=
1√
2N

(|0⟩ ⊗ · · · ⊗ |0⟩+ · · ·+ |1⟩ ⊗ · · · ⊗ |1⟩)

=
1√
2N

2N−1

∑
i=0

|i⟩,

(7)

where N denotes the number of qubits and i is the corresponding bit string within the
computational basis. It is important to note that the factor 1√

2N serves as the normalization
coefficient which ensures that the total probability amplitude of the quantum state remains
equal to 1.

Next, to dynamically adjust angles within the N-dimensional input vector
v⃗ = (x1, x2, . . . , xN), we employ rotation gates Ry and Rz. Specifically, we utilize the
arctan function to determine the angles of rotation. For Ry, we set θi,1 = arctan(xi), re-
sulting in rotation along the y-axis. Similarly, for Rz, we set θi,2 = arctan

(
x2

i
)
, facilitating
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rotation along the z-axis, respectively. We employ the arctan function in this context, in
contrast to the arcsin and arccos functions utilized in [41]. This is because the input values
typically lie in a range of real numbers, rather than within the bounded interval of [−1, 1]
suitable for arcsin and arccos. Additionally, squaring x to obtain x2 serves to generate
higher-order terms after entanglement operations.

4.3.2. Variational Layer

In this layer, qubits are entangled and rotated to the target state using the opera-
tion U(θ), which enables nonlinear complex information mapping. Thus, the mapping
properties of the variational layer can significantly influence the predictive accuracy of a
variational quantum model. Since the variational layer constitutes the learnable component
of a VQC, with quantum gates equipped with adjustable parameters, it can be replicated
across multiple layers to further enhance the prediction performance. However, this may
come at the expense of computational speed. The variational layer of the QLSTM model
consists of several CNOT gates and single qubit rotation gates. However, due to the in-
complete connectivity of CNOT gates across all qubit pairs, the entanglement between
qubits remains insufficiently robust. To optimize the performance of the proposed model,
CNOT gates are applied to every pair of qubits with fixed adjacency 1 and 2 (cyclically) to
generate multiqubit entanglement. The three rotation angles, αi, βi, γi along the x, y, and z
axes, respectively, in the single-qubit rotation gates Ri = R(αi, βi, γi) are not predetermined.
Instead, they are adjusted during the iterative optimization process using classical gradient
descent or other methods. Figure 7 illustrates the integration of VQC within the QLSTM
model. The variational layer, distinguished by the cyan-colored border-box, can be iterated
over multiple times to optimize performance.

Figure 7. Variation quantum circuit in the QLSTM architecture, as utilized in [12,38]. H, Ry, and
Rz denote quantum gates, while x represents the classical input data vector, functioning as a data
encoding layer. Parameters (αi, βi, γi) are adjustable and require optimization. The line connecting •
and ⊗ represents a CNOT gate. The circuits conclude with a measurement layer.

4.3.3. Measurement Layer

This layer generates the computational output of the VQC by measuring the quantum
states of the qubits. Quantum measurements transform each qubit state into classical data,
represented as 0s and 1s. In this context, we evaluate the qubit expectation values by
measuring them on a computational basis. The outcome is a fixed-length vector employed
for subsequent classical postprocessing. In the developed QLSTM model, these measured
values from each VQC are handled within a QLSTM cell. The measured results are further
processed to derive the loss function, which is employed to optimize the parameters and
ultimately generate the predicted stock price data.

4.4. Parameter Learning

Similar to classical NNs, the parameters of VQCs can be optimized by a gradient-based
approach [12,42]. However, in the context of QC, direct parameter optimization within
a quantum circuit is not feasible. Consequently, the optimization of VQCs is performed
with gradient computation using parameter-shift rules. Parameter-shift rules state that we
can calculate the gradient of each parameter in certain quantum circuits by simply shifting
the parameter twice and calculating the difference between the two outputs, all without
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altering the structure of the quantum circuits [43–45]. Given an output f (x, θ) with respect
to parameter θ and input features x, the gradient of the VQCs can be calculated by the
parameter-shift rules, as follows:

∇θ f (x, θ) =
1
2

[
f (x, θ +

π

2
), f (x, θ − π

2
)

]
. (8)

Figure 8 depicts the procedural steps involved in the technique, i.e., the parameter-
shift rules. In each iteration, we perform dual shifts of parameter θi by +π

2 and −π
2 , namely

positive and negative shifts, respectively, and record the measurement results. Subsequently,
we apply classical softmax and cross-entropy functions on classical computers to obtain the
training loss function L.

Figure 8. Efficient gradient computation through the technique parameter-shift rules on a VQC.

5. Experiments and Results

This section outlines the experimental setup, including details of the dataset, evalu-
ation metrics, experimental environments, and hyperparameters for model adjustment.
Subsequently, the experimental results are discussed, focusing on the accuracy and loss
functions as the primary metrics. Finally, the hyperparameters of the QLSTM model are
adjusted to optimize configuration.

5.1. Experimental Settings

We present our experimental setup as a dataset, evaluation metrics, and model hyper-
parameter.

5.1.1. Dataset

We extracted stock price data from Apple Inc. for the period spanning 1 January 2022
to 1 January 2023. The dataset consists of 251 observations collected on weekdays and
five columns: Date, Open, High, Low, and Close. To enhance the quality of our analysis, we
proceed with data preprocessing for numerical stability and faster convergence, ensuring
optimal scaling within the range of [−1, 1]. After preprocessing, we divided the dataset,
allocating 70% for training and 30% for testing. Figure 9 shows the stock prices for the
chosen period and the corresponding data split.
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Figure 9. Selected stock price data from 1 January 2022, to 1 January 2023. The training data are
depicted on the left side of the blue dashed line, whereas the testing data are on the right side.

5.1.2. Evaluation Metrics

We utilized the RMSE and prediction accuracy metrics to evaluate the models. The
RMSE quantifies the average magnitude of errors between the predicted values and the
actual values, assigning more weight to large errors. The formulas are as follows:

RMSE =

√√√√ 1
N

N

∑
t=1

(yt − ŷt)2

Accuracy =
1
N

N

∑
t=1

∥yt − ŷt∥

(9)

where yt is the normalized stock price actual value and ŷ is the normalized predicted value
for tth data.

5.1.3. Model Hyperparameter

To ensure a rigorous comparison, we designed a classical LSTM to have a number
of parameters similar to that of the QLSTM. The LSTM architecture utilizes a hidden
size of 7 and contains a single linear layer to convert the output to a predicted value
yt. The classical LSTM model comprises 288 parameters. For QLSTM, there are 6 VQCs
as shown in Figure 5. In each of these VQCs, we utilize 7 qubits, maintaining a depth
of 2, with 3 rotations within the variational layer, and an additional 2 parameters for
final scaling. Therefore, the number of parameters in QLSTM is 6 × 7 × 2 × 3 + 2 = 254.
Both the LSTM and QLSTM models are trained using a learning rate of 0.01, the mean
squared error (MSE) loss function, and the Adam optimizer across 50 epochs. For other
specialized time-series models, we experiment with classical models such as UnSupervised
Anomaly Detection for multivariate time series (USAD) [46], Deep Autoencoding Gaussian
Mixture Model (DAGMM) [47], Multi-Scale Convolutional Recurrent Encoder-Decoder
(MSCRED) [48], and Multivariate Time-series Anomaly Detection via Graph Attention
Network (MTAD_GAT) [49]. These models are mainly employed for outlier detection
in time series data. However, they are highly dependent on the prediction performance,
which makes them strong candidates for comparison. Furthermore, all these models use
the same hyperparameters as LSTM and QLSTM.

The proposed QLSTM is implemented using PyTorch and PennyLane [50]. The QLSTM
model is trained and simulated using the noiseless IBM simulator. To enhance its fidelity to
actual quantum device behaviors, we also train it using a simulator that integrates noise
from actual quantum devices into the noiseless environment, known as the noisy IBM
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simulator. During training, the QLSTM model is solely simulated on the IBM simulator,
due to the extended wait times for access to the actual IBM quantum computer. That
should be noted that the process of accessing IBM Quantum was achieved through the IBM
Quantum platform, which provides cloud-based access to quantum devices. Additionally,
for prediction tasks, we utilize an actual IBM quantum computing device, specifically the
IBM Nazca device. To avoid any confusion, we denote the noiseless IBM simulator as
Noiseless, the noisy IBM simulator as Noisy, and the actual IBM quantum device as Actual.

5.2. Experimental Results

Here, we present experimental results on the training losses and accuracy of LSTM
and QLSTM models, along with other classical models. Thereafter, we compare their stock
price prediction performances. Additionally, we explore the performance of QLSTM in
various quantum environment scenarios.

5.2.1. Accuracy and Loss

We commence by exploring the enhanced capabilities of our proposed QLSTM in
elevating accuracy and mitigating the training loss. To substantiate the superiority of our
QLSTM over traditional LSTM and other models, we conduct a comprehensive comparative
analysis of their performance. Figure 10 illustrates the training losses (MSE), indicating
that the training losses of the QLSTM consistently remain lower and show less fluctuation
than those of LSTM and other models across all epochs. This improvement is attributed to
the quantum encoding and representation of classical data within a higher-dimensional
Hilbert space, thereby enhancing the data-representation efficiency [51]. In this experiment,
QLSTM models are trained in both noiseless and noisy IBM simulator environments over
50 epochs. Despite being trained in the noisy IBM simulator, the Noisy QLSTM shows a
slightly larger loss function compared to the Noiseless variant, which is expected. However,
it still performs better than LSTM and other models, respectively. By comparing it with
classical LSTM and other models, we can intuitively understand the performance of the
proposed QLSTM model and explore its potential for enhancing the handling of long-term
dependencies and capturing intricate patterns within sequential data.

Figure 10. The training losses of the Noiseless and Noisy QLSTM, classical LSTM, and other models on
the stock price dataset over 50 epochs, where the loss function descends to the lowest point near zero.
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Table 1 presents a comparative analysis of accuracy and RMSE loss for both training
and prediction across all models. Remarkably, the Noiseless QLSTM model outperformed
others, achieving a remarkable accuracy score of 1 and an impressively low RMSE loss
of 0.0371. Even in the presence of noise, the Noisy model surpassed the performance of
other classical models with an accuracy of 0.9714 and an RMSE loss of 0.0511, indicating
its robustness. However, due to prolonged queuing times for accessing the actual IBM
quantum machine [52], we solely performed predictions using the actual IBM quantum
machine, thus explaining the unavailability of training accuracy and RMSE. Overall, QL-
STM showcased a remarkable approximate 10% enhancement in accuracy, coupled with an
impressive 50% reduction in average RMSE compared to classical models.

Table 1. Comparison of the training and prediction accuracies, as well as the RMSE loss values, of
the QLSTM model in different quantum environments with those of the classical LSTM and other
models. N/A denotes “not available”.

Models Training Acc Training RMSE Prediction Acc Prediction
RMSE

Noiseless QLSTM 1.00 0.0371 0.9736 0.0602
Noisy QLSTM 0.9714 0.0511 0.9210 0.0648
Actual QLSTM N/A N/A 0.7619 0.1401

LSTM 0.92 0.0567 0.8815 0.0693
QSVM [36] N/A N/A 0.5894 N/A
USAD [46] 0.9342 0.0708 0.8874 0.0672

DAGMM [47] 0.8947 0.0768 0.8410 0.0721
MSCRED [48] 0.9342 0.0720 0.8828 0.0680

MTAD_GAT [49] 0.9473 0.0668 0.8857 0.0624

5.2.2. Prediction Performance

The QLSTM model showcased superior predictive accuracy compared to classical
LSTM and other models, with values closely matching the actual stock price data. Figure 11
depicts the comparison of prediction performance. We conducted the comparison using
only 20 data points to improve the clarity of the graph. The results highlight a significant
advantage of QLSTM in both the Noiseless and Noisy scenarios, consistently outperforming
the classical models. However, when predicting within the Actual environment, it has the
lowest performance. This observation strongly suggests that the existence of noise in actual
quantum machines significantly influences the overall quality of solutions. Besides the
discussed loss of accuracy stemming from a limited number of qubits, quantum circuits
also encounter quantum noise in practice. This noise arises from quantum processors
being susceptible to their environment, leading to quantum decoherence and the loss
of their quantum state [53]. Addressing the noise issues requires the implementation
of several error-mitigation techniques [54,55], a task that surpasses the boundaries of
this study’s scope. One should take note that noisy simulators often outperform actual
quantum machines, despite utilizing noise data from actual quantum hardware. This is
because simulators typically use a simplified model of the noise that occurs in an actual
quantum machine. Real-world noise can be complex and come from various sources.
Simulators may not capture all the intricacies of this noise, leading to slight differences
in behavior [56]. The rapid convergence underscores the QLSTM model’s exceptional
ability to adapt swiftly to the inherent patterns within the data, a characteristic that sharply
distinguishes it from traditional LSTM and other models. This model, with its highly
accurate and reliable predictions, holds the potential to revolutionize stock price predictions
in financial applications.
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Figure 11. Comparison of the prediction performance of QLSTM in various quantum environments
with classical LSTM and other models using 20 stock price data points.

5.2.3. Number of Qubits

We conduct a study on the impact of the number of qubits on the prediction perfor-
mance of Noiseless QLSTM. Figure 12 illustrates that despite the increasing number of
qubits, the corresponding results do not show significant improvement. In some cases,
such as the transition from 8 to 11 qubits, the performance appears to degrade, even as
the complexity of the quantum circuits increases. One plausible explanation for the lower
results could be attributed to a phenomenon known as the barren plateau problem dur-
ing training. The barren plateau phenomenon is a well-known challenge encountered in
VQCs during the optimization of parameters using classical optimization algorithms [57].
This phenomenon occurs when the optimization landscape becomes exceedingly complex,
leading to exponentially vanished gradients as the number of qubits within the circuit
increases [58]. This finding indicates that the choice of the number of qubits should be
carefully chosen, aligning with the complexity of the problem and the requirements of the
quantum algorithm.

Figure 12. Visualizing the training accuracy and loss of QLSTM models across different numbers of
qubits, spanning from 4 to 15. Green bars represent accuracy, while red bars denote losses in RMSE.
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6. Discussion

The results of contrasting QLSTM with other models and the standard LSTM highlight
the advantages of QML in increasing prediction accuracy and decreasing the loss function
in stock-price analysis. However, further investigations are necessary to validate these
findings conclusively. One significant advantage of the QLSTM model is its utilization
of quantum data encoding, which translates classical data into quantum states and rep-
resents them within superposition and higher-dimensional spaces known as the Hilbert
space. This space is leveraged for the efficient manipulation and processing of complex
information, enabling quantum algorithms to tackle computational tasks that would other-
wise be intractable for classical computers. This facilitates advancements in fields, such
as optimization and ML tasks. Notably, although significant model improvements were
achieved, our study has several limitations.

1. Dataset Scope: Given the limitations of quantum simulations on classical computers
and the prolonged queuing time for accessing the IBM actual quantum machines,
we were restricted to utilizing only 251 stock-price data points. Even though the
proposed model delivered promising performance, further experimentation using
larger datasets is warranted.

2. Model Design: Our model architecture is configured with specific hyperparameters,
a specific quantum data-encoding layer, quantum rotation gates, and a particular
type of variational layer to refine the prediction task. However, extensive investi-
gation is required for in-depth understanding, including diverse quantum circuit
designs, variations in gate types and quantities, and exploration into the depth of the
variational layer.

3. Simulation Limitations: We initially employed a few qubits. However, given the
current availability of quantum devices with hundreds of qubits, it is recommended
that we consider evaluating the QLSTM model with large datasets and qubit numbers
to provide a more comprehensive assessment of its real-world performance.

4. Possibility of Classical Simulation: While variational quantum circuits are promising
for quantum advantage, recent studies suggest that certain types of VQCs, both
noisy and noiseless, can be simulated on classical computers in polynomial time.
For small to medium problem sizes, classical simulation may achieve comparable
results without the overhead of quantum hardware. However, as we move towards
larger, more complex tasks, the polynomial scaling of quantum models is expected to
surpass classical capabilities, particularly when combined with specialized quantum
hardware. In this study, we focus on cases where quantum circuits maintain an edge
in efficiency and predictive accuracy. Nevertheless, we acknowledge the importance
of identifying the boundaries where quantum computation significantly outperforms
classical simulation to fully validate the advantage of our approach [59,60].

In summary, beyond the domain of stock-price prediction, the capabilities of QLSTMs
suggest that they can be applied in other sectors, such as renewable energy and the Internet
of Things, as they generally handle time-series data. Resolving the outlined limitations
could highlight the advantages of QLSTMs in real-world prediction applications.

7. Conclusions

We present a hybrid quantum-classical computing framework that leverages the
classical LSTM model for highly accurate stock price prediction. The QLSTM integrates
the classical LSTM architecture with VQCs to enhance model learning by substituting
LSTM gates with quantum circuits, specifically VQCs. To validate the model’s performance,
we conducted experiments using an IBM simulator running on a classical computer, a
noisy IBM simulator embedded with quantum noise from an actual quantum machine,
and the actual IBM quantum machine. In our experiments, we compared the performance
of classical LSTM and QLSTM in terms of training and prediction losses, accuracy, and
prediction performance. Specifically, we investigated the impact of the number of qubits
on the performance of the QLSTM model. The results showed that QLSTM outperforms
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classical LSTM and other models with significantly lower RMSE and higher accuracy in
both training and prediction tasks. Overall, the QLSTM model achieved a 50% reduction
in RMSE and a 10% improvement in accuracy compared to LSTM. The results also show
that with fewer parameters, QLSTM outperformed classical LSTM models with many
parameters. However, regarding evaluations on an actual quantum machine, the QLSTM
model performed worse compared to its classical counterparts. This study is among the first
to successfully predict stock prices using a hybrid quantum-classical computing framework.
Nevertheless, while recognizing that quantum circuits are yet to be fully operational for
inference and practical applications, this study lays the foundation for implementing NNs
within a QC framework. Notably, currently, state-of-the-art and out-of-the-box classical
ML techniques remain formidable and steadily outperform QC techniques. Future work
will focus on expanding the QLSTM model’s scalability by exploring more advanced
quantum error mitigation techniques to address the limitations posed by noise in actual
quantum machines. Additionally, we aim to experiment with deeper variational quantum
circuits to assess their impact on model expressiveness and generalization, while carefully
managing the risk of barren plateaus. Another promising direction is the integration of
quantum-inspired algorithms that can bridge the gap between quantum and classical
models, potentially enabling quantum-like performance on classical hardware for smaller-
scale applications. Finally, we plan to extend the application of QLSTM beyond stock
price prediction to other time-series domains, such as energy forecasting and healthcare, to
further validate its robustness and versatility in diverse predictive tasks.
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