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ABSTRACT Portfolio optimization is a primary component of the decision-making process in finance,
aiming to tactfully allocate assets to achieve optimal returns while considering various constraints. Herein,
we proposed a method that uses the knapsack-based portfolio optimization problem and incorporates the
quantum computing capabilities of the quantum walk mixer with the quantum approximate optimization
algorithm (QAOA) to address the challenges presented by the NP-hard problem. Additionally, we present
the sequential procedure of our suggested approach and demonstrate empirical proof to illustrate the
effectiveness of the proposed method in finding the optimal asset allocations across various constraints and
asset choices. Moreover, we discuss the effectiveness of the QAOA components in relation to our proposed
method. Consequently, our study successfully achieves the approximate ratio of the portfolio optimization
technique using a circuit layer of p ⩾ 3, compared to the classical best-known solution of the knapsack
problem. Our proposed methods potentially contribute to the growing field of quantum finance by offering
insights into the potential benefits of employing quantum algorithms for complex optimization tasks in
financial portfolio management.

INDEX TERMS Best-known solution (BKS), portfolio optimization, knapsack problem, quantum
approximate optimization algorithm (QAOA).

I. INTRODUCTION
The financial industry plays a remarkable role in the
economic health and growth of every country. In the
constantly evolving world of financial markets, technological
advancements are shaping traditional portfolio optimization
methods, presenting new opportunities and challenges; this
process involves enlarging assets to reduce risk by offsetting
individual risk profiles crucial to the investment process [1].
Although there are many portfolio optimization models, they
possibly have limitations. For example, the mean-variance
model, which provides solutions as percentages of the total
budget, can result in fractional allocations of non-feasible
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assets [2]. In the constant pursuit of optimization, some stud-
ies have explored extensions to portfolio optimization [3].
Among these, a technique that reformulates the financial
portfolio optimization problem as a knapsack-based problem
has been proposed [4], [5].
Knapsack problem [2] was adapted for portfolio opti-

mization by treating all assets included in the portfolio
as items. The value of each asset is represented by its
expected return, usually estimated using historical data or
forecasting techniques. The weight of each item corresponds
to a risky asset, typically measured by its standard deviation
or the variance-covariance matrix of the assets. The knapsack
capacity corresponds to the budget or available capital
that can be invested in the portfolio. By reformulating the
knapsack problem, the primary objective is to maximize
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the total value of the portfolio while satisfying the capacity
constraint and potentially other constraints, such as a target
return or a minimum number of assets. However, similar
to [6], the knapsack problem is considered NP-hard even
with polynomial-bounded weights and values. Therefore,
exploring new paradigms for optimization owing to the com-
putational complexity of solving this problem is crucial [7],
[8].

Similarly, the paradigm of quantum computing, leveraging
the properties of quantum mechanics, has been developed
to solve complex problems intractable for classical com-
puters [9], [10]. The financial domain is a primary aspect
of quantum computing, with applications spanning price
derivation, risk modeling, portfolio optimization, and fraud
detection [11]. As technology redefines problem-solving in
finance, the quantum approximate optimization algorithm
(QAOA), rooted in quantum computing, offers the promise of
efficiently finding approximate solutions for computationally
demanding problems within the polynomial-bounded NP
optimization complexity class [12]. In [13] and [14], the
application of QAOA to the knapsack problem is explored
for optimization purposes.

In this paper, we reformulate the classical portfolio
optimization problem as a knapsack problem that allows for
an efficient mapping onto quantum algorithms, particularly
advantageous for NP-hard financial optimization. By treating
each asset’s expected return as value and its risk as weight,
the knapsack model aligns portfolio constraints with total
risk, permitting optimization under capacity constraints. Our
approach introduces a novel Quantum Walk Mixer (QWM)
combined with the Quantum Approximate Optimization
Algorithm (QAOA), integrating the Quantum Fourier Trans-
form (QFT) within the oracle. This QWM-QAOA frame-
work ensures feasible states are targeted while reducing
computational complexity. Empirical results demonstrate that
QWM-QAOA enhances solution space exploration, provid-
ing robust portfolio configurations with high approximation
ratios even under various noise conditions, thus showcasing
a significant advancement in leveraging quantum algorithms
for practical finance applications. The contributions of our
study can be summarized as follows:
• We propose a portfolio selection approach that for-
mulates the portfolio problem as a knapsack concern
by incorporating expected returns from the Markowitz
model [15] and setting the capacity according to the
knapsack framework.

• We present a Quantum Walk Mixer to Quantum
Approximate Optimization Algorithm (QWM-QAOA)
for the knapsack problem, integrating a shallow circuit
layer to decrease computational complexity and improve
solution quality.

• We demonstrate that our model consistently enhances
the identification of optimal solutions for the knapsack
problem, achieving an impressive approximation ratio
ranging from 100% to 95% in scenarios involving the
selection of 2 to 8 stocks.

The paper is organized as follows: Section II provides
the background knowledge. Section III explores the related
work. Section IV details our proposed method. Section V
demonstrates the experimental setup and performance eval-
uation. Section VI dissects the findings of the proposed
method, underscoring its achievements and limitations.
Finally, we conclude our study in Section VII.

II. BACKGROUND
In this section, we briefly describe the background knowledge
of portfolio optimization, the knapsack problem, and the
quantum approximate optimization algorithm (QAOA).

A. PORTFOLIO OPTIMIZATION
Portfolio optimization is amathematical framework thatmax-
imizes returns while minimizing risks through strategically
selecting assets within an investment portfolio [16]. This is
typically achieved by strategically allocating the proportion
of each asset in the portfolio to optimize the risk-return
tradeoff by considering the specified risk tolerance. The
process involves four steps: i) identifying suitable assets,
ii) projecting anticipated yields based on historical data
for future forecasts, iii) quantifying the risk by assessing
the uncertainty of each asset, and iv) selecting the optimal
portfolio that maximizes the expected yield for a given risk
level [17]. One of the various models used in this study
was the Markowitz model developed by Harry Markowitz in
1952 [15]. This analysis is in conjunction with the variance
of the rate of return, providing a significant assessment of
portfolio risk under a rational framework of assumptions. The
Markowitz model represented the maximum expected yield
by allocating funds into stocks as follows [18]:

Ri =
∞∑
t=1

ditrit , (1)

where rit indicates the anticipated return at time t per stock
invested in, and dit is the rate at which return in the ith security
where time t is discounted back to the presents. The standard
deviation—the variance of return—is a statistical measure
used as an indicator of the uncertainty or risk linked to return.
These statistical indicators effectively measure the extent to
which returns deviate unpredictably from the average value
over a specific period. The variance represents the degree of
variation exhibited by the return Ri concerning the expected
return [E(Ri)], as illustrated:

σ 2
i =

1
N

N∑
i=1

[Ri − E(Ri)]2. (2)

The covariance of returns measures the relative riskiness of
a security within a portfolio of securities. For two securities,
denoted as i and j, the covariance of their returns as

σij = E{[Ri − E(Ri)][Rj − E(R)]}. (3)
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Furthermore, covariance can be measured depending on the
variability of the two individual return series:

ρij =
σij

σiσj
, (4)

where ρij is the correlation coefficient of returns, and σi and
σj are the standard deviation of Rit and Rjt . As previously
stated, an efficient portfolio is characterized by selecting
individual assets within the portfolio and weighting each
asset. Therefore, the portfolio return is calculated as a
weighted average of the returns of the individual investments
within the portfolio. Next, Xi denoted as the weight and
applied to each return of the portfolio takes form as follows:

Rp =
∞∑
t=1

N∑
i=0

ditritXi

=

N∑
i=0

Xi

(
∞∑
t=1

ditrit

)

=

N∑
i=0

XiRi, (5)

where Ri is independent of Xi. The simplified version of the
variance of a portfolio can be written as

σ 2
p =

N∑
i=0

X2
i σ

2
i +

N∑
i=0

N∑
j=1

XiXjσij, (6)

where σ 2
p is the variance of the portfolio, Xi is the percentage

of the investor’s assets that are allocated to the ith asset, and
the σ 2

i represents the variance of the asset j and the covariance
between the returns for assets i and j denoted as σij.
Traditional asset allocation methods, such as the Markowitz
theorem, reportedly provide solutions in percentages. This
approach can suggest allocating half of a market share, which
is often impractical [2]. Therefore, proposing a method for
determining the number of shares for each asset is crucial;
this involves the conversion of expected returns, prices, and
budget into interval values and determines the priority and
importance of each share by framing it within a knapsack-
based model.

B. KNAPSACK PROBLEM
In this context, a given set of items with known sizes is
selected and packed into a knapsack with a fixed capac-
ity [19]. This problem is one of the simpler NP-hard problems
in combinatorial optimization because it focuses onmaximiz-
ing an objective function while adhering to a single resource
constraint. To find the exact solutions, some techniques
have been employed, such as relaxations, bounds, reductions,
and other algorithmic approaches [20]. These techniques
include genetic algorithms [21], dynamic programming [22],
simulated annealing [23], Tabu search [24], and greedy
algorithm [25]. These classical approaches are instrumental
in providing optimal solutions. Although these conventional
approaches are successful and valuable, they are limitations

in computation in the classical domain. Furthermore, the new
paradigm of quantum computing introduces optimization
techniques, including QAOA, to tackle problems such as the
knapsack problem, yielding better solutions than classical
computation techniques [26], [27].

C. QUANTUM APPROXIMATE OPTIMIZATION
ALGORITHM (QAOA)
In combinatorial optimization, QAOA excels as solutions tai-
lored for quantum computing while leveraging the strengths
of classical computing [12], [28]. QAOA, a hybrid quantum-
classical algorithm, has demonstrated remarkable effec-
tiveness in addressing recent NP-hard problems, including
Max-Cut [29], traveling salesman problem [30], and
quadratic unconstrained binary optimization (QUBO) [31].
Consider a combinatorial optimization problem involving an
N-bit binary string represented as z = z1···zN , with a classical
objective function f (z) : {0, 1}N → R is maximized. The
goal is to find a solution z that provides a high approximation
to the maximum values of f (z) [32]. QAOA encodes this
classical objective function into a quantum Hamiltonian Hc,

Hc|z⟩ = f (z)|z⟩. (7)

Furthermore, Hc operates diagonally on the computational
basis states of 2N dimensional Hilbert space (n-qubit space).
Ideally, the performance of the p-level QAOA improves with
increasing p. For the p-level QAOA, the state |+⟩⊗N is
initialized, while the Hc and a mixing Hamiltonian:

B =
N∑
j=1

σ xj , (8)

are applied alternately with controlled duration, resulting in
a wave function:

|ψp(γ⃗ , β⃗)⟩ = e−iβpBe−iγpHc · · · e−iβ1Be−iγ1Hc |+⟩⊗N . (9)

This variational wave function is characterized by 2p
variational parameters, γ and β. The expected value of Hc
in this state is determined through repeated measurements on
a computational basis:

fp(γ⃗ , β⃗) = ⟨ψp(γ⃗ , β⃗)|Hc |ψp(γ⃗ , β⃗)⟩ . (10)

Furthermore, a classical computer is used to search for the
optimal parameters (γ ∗, β∗) and maximize the averaged
output f (γ ∗, β∗):(−→

γ ∗,
−→
β∗
)
= arg max

γ⃗ ,β⃗

fp (γ⃗ , β⃗). (11)

Next, the approximation is assessed by the ratio between the
optimized values fp(

−→
γ ∗,
−→
β∗) and the maximum possible value

fmax = maxzf (z), as the approximate ratio:

r =
fp
(
−→
γ ∗,
−→
β∗
)

fmax
. (12)

This approximation ratio r reflects how close the QAOA
solution is to the optimal classical solution. Typically, the
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search for this approximate ratio begins with a random initial
estimate of the parameter and performing gradient-based
optimization [33].

III. RELATED WORK
Recent studies have explored hybrid approaches to enhance
different quantum algorithms for knapsack-based portfo-
lio optimization problems. For example, [27] introduces
Quantum-Inspired Evolutionary Algorithm (QIEAs) for dif-
ficult knapsack problems. Similarly, [8] used Quantum-
inspired meta-heuristic approaches for constrained portfolio
optimization problems. These advancements highlight the
potential of hybrid quantum-classical approaches for tackling
real-world optimization challenges.

Our study builds upon several key pieces of research
that delve into the application of QAOA to the knapsack
problem concerning portfolio optimization. QAOA has
been employed as a portfolio optimization method. In this
approach, the portfolio optimization problem is transformed
into a binary version. Accordingly, the weight vector is
discretized, with the element taking values of either 0 or
1. In [34], a comprehensive study of quantum computing
approaches for multi-knapsack problems is proposed by
investigating some of the most prominent and state-of-the-
art quantum algorithms using different quantum software
and hardware tools. Consequently, quantum computing offers
the potential for good and fast solutions to multi-knapsack
optimization problems in various fields, such as logistics
(allocating goods to containers), resource allocation in
computing (distributing tasks among different servers), and
financial portfolio optimization (allocating assets among
different investment opportunities). In [35], the Markowitz
models of portfolio optimization were converted into binary
knapsacks. A hard constraint model was employed by
incorporating hard constraints into the quantum algorithm,
involving designing mixing operators based on the con-
straint conditions. Additionally, a combination of XY - and
XYY -mixers was used to encode the constraints in the
quantum circuit. XY -mixers were used to mix the quan-
tum state and generate a superposition of feasible solu-
tions, whereas XYY -mixers were used to enforce the
hard constraints. Moreover, using a hard constraint model
ensured that the quantum state evolved between feasible
solutions satisfying the constraints while allowing for a
high degree of flexibility in opting parameters. Another
intriguing study highlights the strengths of the quantum
walk optimization algorithm (QWOA) [36] compared to
other quantum optimization algorithms while highlighting
the challenges posed by the complex and large solution space
associated with its lattice structure. Moreover, the quantum
mixer optimization algorithm (QMOA) was introduced as
an extension of QWOA. It enhanced the efficiency of
quantum optimization algorithms for portfolio optimiza-
tion by reducing the number of iterations required for
computations [37].

IV. KNAPSACK-BASED PORTFOLIO OPTIMIZATION
In this section, we explain our overall architecture, knapsack-
based portfolio formulation, and QAOA for the knapsack
problem.

A. OVERALL ARCHITECTURE
This section outlines the complete process from stock data
preprocessing to determining the optimal portfolio con-
figuration using a quantum-enhanced approach. As shown
in Figure 1, the workflow begins by processing histori-
cal stock prices to compute the daily returns using the
Markowitz-based portfolio optimization model. Algorithm 1
calculates the expected returns (E(R)), which are crucial
inputs for formulating the portfolio selection as a knapsack
problem. This step maps the expected returns, stock weights,
and capacity constraints into a knapsack framework to
define the feasible portfolio configurations. In the next
phase, Algorithm 2 solves the knapsack-based portfolio
optimization problem. Here, we first construct the feasible
oracle using Quantum Fourier Transform (QFT) [38] to
ensure that only valid solutions are considered for further
optimization. Once a feasible solution is identified, the
QuantumWalk Mixer (QWM) is applied within the Quantum
Approximate Optimization Algorithm (QAOA), following
the approach of [36]. The combination of QWM and QAOA
(QWM-QAOA) efficiently explores the solution space,
minimizing computational complexity while improving the
accuracy of the optimization. The final output is a binary
string, where each bit represents whether a stock is included
or excluded from the portfolio. For instance, a result of (1,0)
for two stocks indicates that Stock A is selected, while Stock
B is excluded, thus guiding the final portfolio selection and
investment strategy.

B. KNAPSACK-BASED PORTFOLIO FORMULATION
Our methodology is based on the fundamental principles
of mean-variance optimization, focusing on the Markowitz
model. This model historically maximizes the anticipated
yield of a portfolio while considering a predetermined level
of risk, quantified by the variance of portfolio returns.
We denoted the expected return E(Ri) of stock i by using
the mean return calculation. Next, we transformed the
expected return into a knapsack problem. Subsequently,
we extended this model by reinterpreting the expected return
as a component of a knapsack problem, thereby aligning
portfolio optimization with knapsack problem dynamics; this
adaptation involves redefining the expected return of each
stock as a value optimized under the constraints of total
portfolio risk. This mathematical transformation effectively
converts portfolio optimization into a knapsack problem:

maximize R(x) =
n∑
i=1

xiE(Ri)

subject to
n∑
i=1

xiwi ≤ C, (13)
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FIGURE 1. Workflow diagram of the quantum walk mixer with QAOA for knapsack-based portfolio optimization. The process starts with Algorithm 1,
where a list of stock prices is collected over time to prepare historical stock prices using the Markowitz model to calculate the expected return. This
expected return is crucial in mapping the knapsack problem by considering the values, weights, and capacity of the portfolio. The optimization process
in Algorithm 2 involves employing a quantum walk mixer with QAOA, including the preparation of a feasible oracle. This is followed by executing the
quantum walk mixer with QAOA to enhance the search for the optimal portfolio configuration. The final output is a binary string, with 1 indicating the
inclusion and 0 indicating the exclusion of stocks from the portfolio, resulting in the optimal solution.

where the risk of including stock i in the portfolio, denoted
as wi, and the total risk tolerance, denoted by C , serves as the
knapsack capacity. The binary variable xi indicates whether
to include stock i in the portfolio, and E(Ri) represents its
expected return values.

This process can be summarized as Algorithm 1. It begins
by extracting the historical returns of each stock within a
specified time range, from the start to the end date, using the
HistoricalReturn function. From line 5− 12, these historical
returns are then passed into the Markowitz model through the
ExpectReturn function, which calculates the expected returns,
denoted as E(R). These expected returns provide key insights

into the potential profitability of the selected stocks in the
portfolio problem. Specifically, the expected returns (E(R))
are assigned as the values in the knapsack problem, and the
weights for each stock are uniformly set to 1, representing
equal weighting for all assets. Afterward, the algorithm also
defines the capacity constraint (C) of the knapsack problem,
which is set to half the number of stocks, calculated as
Length(E(R))/2. This framework effectively transforms the
portfolio optimization problem into a knapsack problem
formulation. This transformation allows for a more structured
handling of assets and makes it possible to apply powerful
combinatorial optimization techniques.
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Algorithm 1 Formulate Portfolio Optimization as a Binary
Knapsack Problem
INPUT: start: start date of stock prices, end : end date of
stock prices, stocks: list of stocks
OUTPUT: problem: portfolio optimization modeled as a
knapsack problem
1: procedure ENCODETOKNAPSACK(start , end , stocks)
2: // Extracte historical return
3: prices← HistoricalReturn(start , end , stocks)
4: // Calculate the expected return
5: E(R)← ExpectReturn(prices)
6: // Set a weight of 1 to each stock
7: for i← 0 to Length(E(R)) do
8: weights[i]← 1
9: end for

10: // Set the capacity of knapsack
11: C = Length(E(R)) / 2
12: // Formulate the problem
13: problem← (E(R),weights,C)
14: return problem
15: end procedure

C. QAOA FOR THE KNAPSACK PROBLEM
After formulating the portfolio optimization as a knapsack
problem, we optimized it using Algorithm 2. We employed
the QWM-QAOA to prepare the mixing Hamiltonian for the
QAOA process. In lines 2 − 10, we set up the quantum
registers and other necessary preparations for QAOA using
theQuantumRegister function. Line 12 focuses on construct-
ing the Mixing Hamiltonian Hm using the QWM-QAOA
approach, which is achieved via the QWalkMixer function.
This step requires parameters such as a predefined trotter step
m, the number of quantum registers, weights, and ancillaries.
Next, the algorithm prepares the phase Hamiltonian Hc
using PhaseHamiltonian (line 13), which plays a crucial role
in the construction of the QAOA. More details on these
concepts will be provided in the following sections. At each
circuit layer p, the algorithm computed the expectation value
(line 28), facilitating the determination of a new set of
optimal 2p parameter (γopt , βopt ). These optimal parameters
were identified using the SHGO optimization method and
implemented as ShgoOptimizer line 29. Finally, the algorithm
measured probabilities (line 31) through a measurement
process. These probabilities were used to determine the
optimal solution using the OptimalChoice function to choose
the best selection of items represented as ar as the optimal
choice of approximation ratio.

1) FEASIBILITY ORACLE
The feasibility oracle is used as a hypothetical subroutine
that instantly determines whether a proposed solution to
the knapsack problem violates any constraints [39]. We can
explore solutions within a well-defined space of bitstrings
by representing our portfolio model as a binary knapsack

Algorithm 2 Optimize Knapsack Problem Using the QWM-
QAOA Algorithm
INPUT problem: knapsack problem, p: circuit layer, m:
trotter step count for QAOA
OUTPUT ar : approximation ratio as optimal choice
1: procedure OPTIMIZEKNAPSACK(problem, l, m)
2: // Determine problem choices
3: choices = Length(problem.weights)
4: // Calculate the total weight
5: total_weights = TotalWeight(problem.weights)
6: // Setup quantum registers
7: creg = QuantumRegister(choices)
8: wreg = QuantumRegister(total_weights)
9: // Initialize quantum register
10: areg = QuantumRegister(3)
11: // Define quantum mixing
12: Hm = QWalkMixer(problem,m, creg, wreg, areg)
13: // Define phase operations
14: Hc = PhaseHamiltonian(creg, problem)
15: // Start with superposition state
16: |ψ0⟩ = |+⟩

⊗choices

17: for k = 1 to p do
18: if k ← 1 then
19: γk , βk = Initialize()
20: else
21: (γk ,βk ) = (γopt , βopt )
22: end if
23: // Apply the unitary operators
24: UB(βk ) = e−iβkHM
25: Uc(γk ) = e−iγkHc

26: |ψk ⟩ = Uc(γk )UB(βk ) |ψk−1⟩
27: // Define the QAOA cost function
28: cost(γ, β) = ⟨ψk |Hc |ψk ⟩
29: // Optimize the cost function
30: (γopt , βopt ) = ShgoOptimizer(cost(γ, β))
31: end for
32: // Measure the final state
33: probabilities =MeasureProbabilities(|ψp⟩
34: // Obtain the optimal probability
35: ar = GetOptimalSolution(probabilities)
36: return ar
37: end procedure

problem. We defined K (N ) = (0, 1)N as the set of
all possible bitstrings of length N representing potential
portfolio choices. Furthermore, each possible choice of any
of the N items is represented by a bitstring x ∈ K (N ). ).
Thus, the subset feasible solution was denoted as F for the
knapsack problem, and the feasibility function was defined
as

f : K (N )→{0, 1}, x 7→ f (x)=

{
1, if x ∈ F,
0, otherwise.

(14)
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Considerably, the feasibility oracle to be unitary Uf as:

Uf |x, y⟩ = |x, y⊕ w(x)⟩ , ∀x ∈ K (N ), y ∈ K (1) (15)

In portfolio optimization, a state |x⟩ symbolizes a specific
stock allocation, which is deemed feasible (i.e., x ∈ F) if
the total weight w(x) does not exceed the capacity C . This
oracle toggles a flag qubit |y⟩ based on the feasibility of the
state |x⟩, representing a possible portfolio configuration.

Next, we allocated qubits for storage as follows: S to record
the formulated knapsack choices,Kw to hold the weight of the
item choice, andKF as the flag qubit indicating the feasibility
of the state S. Remarkably, the number of qubits required for
S, Kw, and KF are deonted by QS , Qw, and QF respectively.
Upon that, the total number of qubits that are required isQS+
Qw + QF .

Furthermore, the total weight w(x) is calculated by
adding the weight of each item to register Kw, controlled
by the corresponding bit in register S. We also compare
the computed weight w(x) to the capacity C using an
inequality check facilitated by a multiple-controlled NOT
gate.

For suitable W0 ∈ N, the inequality can be verified using
the following condition:

w(x) ≤ C ⇔ w(x)+ C0 < C + C0 + 1 (16)

This condition ensures that the binary representation of
w(x) + C0 has zeros in all positions beyond k . The
feasibility oracleUf employs two primary unitary operations-
U1 and U2. U1 augments Kw with a predetermined offset
C0, facilitating the binary representation required for the
feasibility check; U2 is applied conditionally based on U1’s
outcome.

We begin by illustrating how U1 is prepared. Quantum
Fourier Transform (QFT) [38] is employed within the unitary
operationU1 to facilitate the process of adding weights in the
knapsack problem.

This process starts with the initialization of the ancillary
weight register Kw to |0⟩. Next, QFT is applied to Kw
to prepare the register for quantum addition, even though
the QFT does not change the state for state |0⟩. This
step is necessary for nonzero initial states Kw. Post-state
transformation of Kw from the computational basis to the
Fourier basis, the weight representation was distributed
across the amplitude of the quantum state:

QFT |Kw⟩ =
1
√
2n

2n−1∑
k=0

e2π i·0·k/2
n
|k⟩ (17)

where we use the notaion e(t) = exp(2π it), and k ∈ Z
is the binary representation of kn − 1, · · · , k0. Furthermore,
weights were added to QFT |Kw⟩ using controlled operations
applying phase rotations. These operations are conditioned
on the bits of the bitstring x indicating the selection of items.
Each bit in x determines whether the corresponding weight
wi should be added to Kw. The addition in the Fourier space
was related to phase rotation and implemented by a sequence

of controlled phase gates. The magnitude of the rotation was
determined by wi and the position of the bit controlling the
operation. The implementation of controlled additions can
be described as follows: for each selected item (where the
corresponding bit in x is |1⟩, a controlled phase rotation is
applied to Kw. The phase added to each computational basis
state |k⟩ within Kw is proportional to wi:

|Kw⟩ =

{
|Kw + wi⟩ , if xi = 1,
|Kw⟩ , otherwise.

(18)

This phase rotation effectively encodes the addition of wi
into the quantum state. After completing this process, the
step transformed the register back to the computational basis
required, where

QFT−1 |Kw⟩ (19)

The inverse QFT decodes the phase information back into
a computational state representing the total weight of the
selected items. If QFT encodes the weight as a superposition
of phases, the inverse QFT converts these phases back into a
binary number the sum of the weights. The final state of the
register Kw after applying U1 was the binary representation
of the total weight of the items:

U1 |x, 0, y⟩ = |x,w(x)+ C0, y⟩ (20)

Figure 2 shows how U1 is implemented using an algorithm
based on QFT. Following the implementation of the unitary
operation U1, U2 is described in Figure 3, which comprises
a quantum circuit that conditionally modifies the state of an
ancillary qubit concerning the sum of weights represented
in the register Kw. Referring to Equation 16, the ancillary
qubit |y⟩ underwent a state flip to signal a valid configuration
when the total weight w(x), augmented by a constant offset
C0 is less than the predefined threshold C + C0 + 1.
This transformation was executed through several multi-
controlled-NOT gates, where each gate was influenced by
a qubit distinct from the weight register. The successful
transition of the ancillary qubit’s state post U2 signified a
feasible solution, adhering to the knapsack’s capacity, which
effectively segregates the solution space into permissible and
impermissible weights.

FIGURE 2. Circuit implementation of U1. It encodes the total weights of
item selections into the ancillary register KW using quantum Fourier
transform-based arithmetic. A predefined offset C0 is added to the
register to facilitate subsequent feasibility checking.

VOLUME 12, 2024 183785



C. Huot et al.: Enhancing Knapsack-Based Financial Portfolio Optimization Using QAOA

FIGURE 3. Circuit implementation of U2. It executes a conditional check
based on the total weight calculated by U1 using several multi-controlled
NOT gates to flip the ancillary qubit if the weight condition is satisfied.

2) QUANTUM WALK MIXER FOR ENFORCING CONSTRAINTS
This process relies on the mixing operator UB(β) generated
by mixing Hamiltonian B from Equation 8 as follows:

UB(β) = e−iβB (21)

Alternatively, by leveraging the feasible function f in
Equation 14 and neighboring states ni(x) for exploring the
solution space, B can be described as

B |x⟩ =
N−1∑
i=0

fi(x) |ni(x)⟩ , ∀x ∈ K (N ) (22)

where ni(x) is the ith neighbor of x (x with ith bit flipped).
Using this alternative representation, it is easy to observe that
∀x, x ′ ∈ K (N ).

⟨x|B |x ′⟩ =

{
1, if Ham(x, x ′) = 1,
0, otherwise

(23)

where Ham (x, x ′) represents the Hamming distance between
two binary strings x and x ′, which is the count of positions
where the corresponding bits differ. The exact imple-
mentation of the desired mixing operator UB(β) presents
challenges due to its Hamiltonian, requiring additional
resources and non-commuting elements. To address this,
we employ an alternative operator B̃, closely resembling B.
This operator is constructed from Vi, and the inverse V †

i for
encoding feasibility information of neighboring states into
auxiliary qubits that enable the controlled state manipulation.
Additionally, the operator includes single-qubit Xi gates for
creating neighboring state exploration. Moreover, Uf the
feasible oracle is included to determine the feasibility of
states by ensuring that only valid states are mixed. Finally,
RXi (2β) aids in adjusting the amplitudes of states based on

FIGURE 4. General circuit for a single-qubit quantum walk mixer.
It illustrates the core operations involved in mixing a quantum state with
its feasible neighbor, guided by feasibility oracles and single-qubit
rotations, as part of a constrained optimization algorithm.

feasibility and further refining the mixing process, whereas
auxiliary qubits are employed to store feasibility information.

As shown in Figure 4, the process starts from:

ViV
†
i |x, 0, 0, 0⟩ = |x, 0, 0, 0⟩ (24)

which implies that the behavior of Vi when acting on a state
|x, 0, 0, 0⟩ is to transform it into a new state with additional
information encoded in the auxiliary qubits, dependent on
the feasibility function f and its value at neighboring points.
Therefore, the state of Vj can be described as

Vi |x, 0, 0, 0⟩ = |x, f (ni(x)), f (x), fi(x)⟩ (25)

Next, neighboring state mapping is performed using V †
i to

determine whether the original and neighboring states have
the same feasibility. Thus, Equation 24 can be written as

V †
i |x, f (ni(x)), f (x), fi(x)⟩

= |ni(x), f (x)⊕ f (ni(x)), f (x)⊕ f (ni(x)), fi(x)⊕ fi(x)⟩

=

{
|ni(x), 0, 0, 0⟩ , if f (x) = f (ni(x)),
|ni(x), 1, 1, 0⟩ , otherwise

(26)

Then, the bit flip of the i− th qubit acts as:

Xi |x⟩ = |ni(x)⟩ (27)

Therefore, we can describe the encoded feasibility informa-
tion after applying Vi and based on Equation 25 as follows:

(Xi ⊗ I⊗2 ⊗ |1⟩ ⟨1|)Vi |x, 0, 0, 0⟩
= fi(x) |ni(x), f (ni(x)), f (x), fi(x)⟩ (28)

Next,

V †
i

(
Xi ⊗ I⊗2 ⊗ |1⟩ ⟨1|

)
Vi |x, 0, 0, 0⟩

= fi(x) |ni(x), 0, 0, 0⟩ (29)

Thus, for a given B̃ operator, which approximates the original
B operator, we have

B̃ =
N−1∑
i=0

V †
i

(
Xi ⊗ I⊗2 ⊗ |1⟩ ⟨1|

)
Vi (30)
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Moreover, B̃ implements B given three ancillary qubits,
or more precisely, it is represented as:

B̃ |x, 0, 0, 0⟩ =
N−1∑
i=0

fi(x) |ni(x), 0, 0, 0⟩

= (B⊗ I⊗3) |x, 0, 0, 0⟩ , ∀x ∈ K (N ). (31)

It follows that

e−iβB̃ |x, 0, 0, 0⟩ = e−iβ(B⊗I⊗3)
|x, 0, 0, 0⟩

=

(
UB(β)⊗ I⊗3

)
|x, 0, 0, 0⟩ (32)

where B̃ is used to generate UB. Moreover, B̃ is not
commute and should use three ancilla qubits. Therefore, the
approximate implementation of e−iβB̃ needs to use the trotter
product formula. Meanwhile, using the identity RXi (2β), the
state representing the rest of the circuit in Figure 4.

e−iβV
†
i

(
Xi⊗I⊗2⊗|1⟩⟨1|

)
Vi

= V †
i

(
RXi (2β)⊗ I⊗2 ⊗ |1⟩ ⟨1| + I⊗(N+2) ⊗ |0⟩ ⟨0|

)
Vi

(33)

where RXi (2β) = cos(β)I⊗N−isin(β)Xi. Furthermore,
we optimized UB(β) ⊗ I⊗3 with the trotter product formula
as

e−βB̃ =

(
N−1∏
i=0

V †
j

(
RXi

(
2β
m

)
⊗ I⊗2 ⊗ |1⟩ ⟨1|

+I⊗(N+2) ⊗ |0⟩ ⟨0|

)
Vj

)m

+ O
(
Nβ2

m

)
(34)

Moreover, to maintain β the validity of the approximation
within the new parameter range, the β range needs to be
adjusted accordingly to β ∈ [0,mπ ).

As an objective function, we use the value function
v. Therefore, the corresponding phase separation can be
described as follows:

UC (γ ) |x⟩ = e−iγ v(x) |x⟩ (35)

3) NUMBER OF QUBIT REQUIREMENTS
The presented illustration implies that using a feasibility
oracle with nf ancilla qubits requires N + nf + 3 qubits.
In contrast, there is an exigency for an additional three qubits,
specifically for generating the unitary UB (Equation 32).

V. EVALUATION
This section presents the numerical results by evaluating the
effectiveness of the proposed algorithm across different asset
numbers along with the impact of parameter configuration.

A. EXPERIMENTAL SETUP
We present the experimental setup for evaluation, specifically
the datasets, hyperparameter configuration, and model setup
used to evaluate our proposed approach.

1) HYPERPARAMETER CONFIGURATION
Initially, we implemented the proposed method using the
Qiskit library [40], a widely used open-source quantum
computing framework. We run the algorithms on the QASM
simulator, a tool provided by Qiskit for simulating quantum
circuits, which helped us gain insights into the behavior and
performance of the algorithms before moving on to the real
quantum device. Moreover, we used a fake backend noise
from 127 qubits of IBM FakeWashington. While using the
real device, we used IBMNazca, a 127-qubit quantum device,
for quantum computations, which offers the opportunity
to test the algorithms in a real-world quantum computing
environment. The experimental phase involves conducting
several tests in which we select varying stocks from
yahoofinance, such as Apple Inc. (AAPL), Amazon.com Inc.
(AMZN), Alphabet Inc. (GOOGL), Microsoft Corporation
(MSFT), NVIDIA Corporation (NVDA), and Tesla, Inc.
(TSLA), Netflix, Inc. (NFLX), and Visa Inc. (N). Notably,
the selection of these stocks was based on different scenarios,
including all cases from two to eight stocks. Postselection,
we proceeded with the experimental setup of the proposed
method. During the optimization process, we focused on
optimizing QAOA, which was achieved by optimizing the 2p
angle parameters, i.e., β and γ , using the classical optimizer
SHGO [41]. Additionally, we integrated quantum walk to
boost optimization by leveraging its benefits for refining the
process and achieving superior results.

TABLE 1. Hyperparameter Configuration.

2) PROBLEM SETUP
To evaluate our proposed method’s performance, we defined
our algorithm’s problem based on the number of assets
to be optimized (Table 2). First, we selected 2–8 subsets
of stocks using the capabilities of PyPortfoliopt [42]. The
values represent the expected return of stocks counting
from January 1, 2018, to January 1, 2023. The knapsack
capacity Cap is the maximum weight, where in our case
we set it to be half of the total number of assets. This step
clarifies the problem and enables us to tailor our algorithm
accordingly. We aimed to evaluate the effectiveness of the
QAOA optimization technique in portfolio optimization.
To achieve this, we specifically evaluated the performance of
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TABLE 2. The optimal stock selection and corresponding values for
various portfolio sizes under the binary knapsack constraint. The table
displays the number of selected stocks (#Ss), stock types (Type), their
respective values, the knapsack capacity (Cap), the Best Known Solution
(BKS), and the number of qubits used (#Qs). The BKS column lists the
binary string representation of the selected stocks, reflecting the optimal
solution under the given capacity constraint.

the algorithm using the best-known solution (BKS), a result
of using a classical algorithm [43], where 1 signifies selection
and 0 denotes exclusion. This technique compared the results
obtained from our algorithm with those of the classical solu-
tion, providing a benchmark for assessing its performance
and effectiveness. By undertaking this evaluation, we can gain
valuable insights into the capabilities and limitations of the
QAOA optimization technique in portfolio optimization.

B. PERFORMANCE EVALUATION
In this section, we present our model performance and its
sensitivity analysis.

1) MODEL PERFORMANCE
By meticulously exploring the variable settings within our
QWM-QAOA, we identified that a circuit layer depth of
p = 3 and a Trotter step value of m = 3 yielded
the best results. Figure 5 illustrates the approximation
ratios for knapsack-based portfolio optimization with varying
numbers of stocks (ranging from 2 to 8 stocks) under three

different environmental conditions: noise-free (simulator),
noisy (using FakeWashington as a simulated backend), and
noisy (real device: IBM Nazca with 127 qubits).
• Noise-free (Simulator): The approximation ratios
remain very high across all stock configurations, ranging
from 100% (for 2 and 3 stocks) to 96% (8 stocks),
indicating that the algorithm performs near-perfectly in
an ideal, noise-free environment.

• Noisy (Fake Backend): The introduction of noise
through the simulated FakeWashington backend results
in a decline in performance. The approximation ratios
range from 98% to 70%, with lower values observed
for larger portfolios. For example, 2 stocks achieve an
approximation ratio of 98%, while 6 and 7 stocks drop to
70%. Interestingly, for 8 stocks, the approximation ratio
slightly improves to 78%, indicating a non-linear impact
of noise for larger portfolios.

• Noisy (Real Device): The experiment is executed on the
real IBM Nazca device with the approximation ratios
dropping further, ranging from 96% (for 2 stocks) to
51% (for 6 stocks). Surprisingly, for 7 and 8 stocks,
the approximation ratios increased to 52% and 55%,
respectively.

This performance reduction is due to real-world factors, such
as gate errors and decoherence, which exert amore significant
impact as the number of stocks increases. This unexpected
result hints at the potential for further improvements, even as
the number of stocks increases in a noisy environment [44].
These issues highlight the importance of advanced error
mitigation techniques, though such methods are beyond the
scope of this study [45], [46].

FIGURE 5. Approximation ratio for different scenarios involving various
numbers of stocks under three distinct environmental conditions:
noise-free with the simulator, noisy with Fake Washington, and noisy
with the IBM Nazca device.

2) SENSITIVITY ANALYSIS
We conducted a sensitivity analysis of key parameters
using our QWM–QAOA algorithms, such as the circuit
layer (p) and the number of trotter steps (m). These
parameters are crucial for shaping the effectiveness of our
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FIGURE 6. Approximation ratio of the circuit layer (p) is 1–5 across all
problems. Remarkably, when p ⩾ 3, the approximation ratio reaches
100%, indicating that the proposed method is efficient even at the lower
circuit layer.

proposed algorithm. Through a methodical examination and
evaluation, we present details of the relationship between
these parameters and how much they influence the overall
efficiency and resilience of our QWM–QAOA.
• Circuit Layer: Figure 6 shows that as the circuit
layer increases beyond the initial value of p ⩾ 3,
the approximation ratio of the diverse portfolio opti-
mization result consistently reaches an impressive result
ranging from 100% to 95%, categorically based on the
setup cases of portfolio optimization. This empirical
evidence emphatically establishes that our performance
consistently produces an efficient result even at some
circuit layers.

• Trotter Step in QWM-QAOA: We aimed to find the
parameter m, representing the trotter step counts in the
QWM–QAOA algorithm while maintaining a constant
circuit layer of p = 3 and optimize β, γ for the resulting
circuit of 1–5. Table 3 shows that the approximation ratio
for various stock selections increasingly exhibits a better
result starting from m = 3, ranging from 100% to 95%.
When m = 5, we obtained efficient optimization results
from our proposed method ranging from 100% to 96%.
The approximation ratios demonstrate how increasing
the trotter steps improves the portfolio optimization
results, particularly when m ⩾ 3, yielding consistently
higher performance across different portfolio problem
sizes.

TABLE 3. Performance of QWM-QAOA with varying Trotter steps across
different stock selection scenarios. The table presents the approximation
ratios for various numbers of stocks, ranging from 2 to 8, using the
QWM-QAOA algorithm with different Trotter step values (1 to 5).

VI. DISCUSSION AND LIMITATION
our research provides a novel application of quantum
computing, specifically through the Quantum Walk Mixer
combined with a Quantum Approximate Optimization Algo-
rithm (QWM-QAOA) integrating with Quantum Fourier
Transform (QFT), to address the knapsack-based financial
portfolio optimization problem. By transforming the tradi-
tional portfolio optimization problem into a binary knapsack
problem formulation, we were able to leverage quantum
computing to provide efficient and effective optimization
strategies, particularly for NP-hard problems. The results
from our experiment on noise-free simulation indicate that
the QWM-QAOA approach can yield high approximation
ratios in both fake backend and real quantum devices, demon-
strating the potential of quantum computing in financial
optimization tasks. Our study also highlights the importance
of various QAOA parameters, such as circuit layer p and
trotter step m, in optimizing the performance of our proposed
algorithm. Through sensitivity analysis, we found that a
circuit layer of p ⩾ 3 and the number of trotter steps m ⩾
3 provided the most converged results, with approximation
ratios consistently reaching between 100% and 96% in the
best cases. This empirical evidence supports the notion
that QAOA with the proper configuration, can outperform
classical optimization approaches in the context of financial
portfolio optimization problems. However, our experiments
on real quantum hardware revealed some limitations. The
approximation ratio dropped significantly due to unavoidable
hardware noise such as gate errors and decoherence errors,
with real-device performance yielding ratios as low as 50%.
Despite these current limitations of quantum hardware, this
finding emphasizes the pressing need for continued research
in quantum error mitigation (QEM) techniques and hardware
advancements to unlock the full potential of our proposed
QWM-QAOA method on portfolio optimization problems in
real-world applications.

A. NOISE AND HARDWARE CONSTRAINTS
The most significant limitation encountered in this study was
the impact of overall gate errors when using real quantum
devices [47]. While the QAOA algorithm performed well
in simulators and fake backend environments, real hardware
results showed a substantial drop in approximation ratios
(below 50%). This limitation reflects the current state of
NISQ devices, which are not yet fully capable of handling
complex optimization problems without significant fidelity
loss.

B. SCALABILITY
While our approach worked well for smaller portfolios, scal-
ing QWM-QAOA to larger datasets faces challenges due to
the increasing number of required qubits and the limitations
of current quantum hardware, such as limited qubit avail-
ability and short coherence times. These constraints hinder
its applicability to larger portfolio optimization problems.
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Advancements in quantum hardware and quantum error
mitigation (QEM) techniques along with hybrid approaches
are needed to extend QWM-QAOA to more complex real-
world scenarios.

C. LIMITED DATASET
The experimental evaluations were conducted on a small
selection of stocks, ranging from two to eight, providing
a controlled setting to demonstrate the algorithm’s effec-
tiveness. However, to determine its practical value, future
evaluations must incorporate historical data, transaction
costs, and market dynamics. Expanding the tests to larger and
more diverse datasets will be crucial for assessing the broader
applicability of the QWM-QAOA approach in more complex,
real-world financial scenarios.

VII. CONCLUSION
In this research, we proposed a novel approach to financial
portfolio optimization by leveraging the capabilities of
quantum computing, specifically through the Quantum Walk
Mixer integrated with a Quantum Approximate Optimization
Algorithm (QWM-QAOA). We reformulated the traditional
portfolio optimization problem into a knapsack problem,
enabling us to address the NP-hard nature of this financial
decision-making challenge. Our experimental evaluations,
conducted across simulated, fake, and real quantum devices,
demonstrated the effectiveness of our approach in yield-
ing high approximation ratios, particularly in noise-free
environments. The results of our study reveal that the
QWM-QAOA approach is capable of producing efficient
portfolio selections, with approximation ratios ranging from
100% to 95% in noise-free conditions and from 98% to 70%
on noisy fake devices. However, when tested on real quantum
hardware, the results showed a decline in performance due
to noise and gate errors, reducing the approximation ratios
to approximately 50%. These findings highlight the current
limitations of quantum hardware, particularly in dealing with
noisy intermediate-scale quantum (NISQ) devices. While our
proposed method showed promise, especially in noise-free
environments, future work is needed to address the noise
in real quantum devices. Error mitigation techniques with
further exploration of quantum algorithms for optimization
will be crucial in enhancing the robustness and scalability
of this approach in real-world applications. Our study
contributes to the growing field of quantum finance, offering
insights into how quantum algorithms can be applied to
complex financial problems such as portfolio optimization.

CODE AVAILABILITY
The code that supports the findings of this study is openly
available in the Github repository, QWM-QAOA.
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